美俄高超声速武器发展研究综述
李思冶,查柏林,王金金,石易昂,苏庆东
摘要(Abstract):
随着俄罗斯匕首、锆石等高超声速武器飞速发展,非对称作战逐渐成为未来新型作战样式以及影响各国全球战略威慑的重要因素。主要介绍了近期美俄高超声速武器研究和试验情况,分析了各型号高超声速助推滑翔导弹、高超声速吸气式导弹和高超声速飞机的作战性能、战略用途以及发展联系。在此基础上,论述了未来高超声速飞行器发展过程中超燃冲压发动机与组合循环动力系统、热防护结构设计与高温材料应用和制导与控制等关键技术面临的难题,介绍了相关技术的研究进展并作出展望。
关键词(KeyWords): 高超声速武器;超燃冲压发动机;热防护结构;制导与控制
基金项目(Foundation): 陕西省自然科学基础研究计划资助项目(2020JQ-488)
作者(Author): 李思冶,查柏林,王金金,石易昂,苏庆东
DOI: 10.16338/j.issn.1009-1319.20200185
参考文献(References):
- [1]苑桂萍,胡冬冬.近二十年来美军高超声速领域科研投入分析[J].飞航导弹,2019(8):77-83.
- [2]Эксперты:конкуренция в областираз работки гиперзвукового оружия возрастает[EB/OL]. https://tass.ru/armiya-i-opk/5337836/,2018-06-30.
- [3] Advanced Hypersonic weapon(AHW)[EB/OL].https://www. globalsecurity. org/military/systems/munitions/ahw.html/,2013-07.
- [4]侯晓艳,郭朝邦.雷锡恩公司获DARPA 2000万美元合同继续开发战术助推滑翔项目[J].飞航导弹,2015(6):2-2.
- [5]Старт испытаний гиперзвуковой ракеты СШАотодвинули на конец 2020 года[EB/OL]. https://tass. ru/mezhdunarodnaya-panorama/6570026/, 2019-06-20.
- [6] Department of defense off-camera press briefing on the 2019 missile defense review[EB/OL]. https://www.Defense.gov/,2019-06.
- [7]Армия США приступает к разработкегиперзвукового оружия наземного базирования[EB/OL]. https://tass. ru/mezhdunarodnaya-panorama/6243868/,2019-03-21.
- [8]США заключили контракт на созданиегиперзвукового оружия для сухопутн- ых войск на $31,9 млн[EB/OL]. https://tass.ru/mezhdunarodnayapanorama/7530555/,2020-01-15.
- [9] Speed is the new stealth[EB/OL]. http://www. lockheedmartin. com/us/news/features/2013/sr-72. html/,2013-11-03.
- [10] Russian aerospace forces test launch Kinzhal hypersonicmissile[EB/OL]. http://tass. com/defense/993439/,2018-03.
- [11] 4202, izdelie 15Yu71, kompleks 15P7-71[EB/OL].http://militaryrussia.ru/blog/topic-807/,2018-04.
- [12] Pervymi nositelyami giperzvukhovykh blokov“Avangard”stanut rakety UR-100N UTTKh[EB/OL].https://www.vpk-news.ru/news/41795/,2018-03.
- [13] Russia’s zircon hypersonic missile to be test-launched from underwater-reports[EB/OL]. http://www.globaltimes.cn/content/1182446.shtml/,2020-03-12.
- [14]王振国,梁剑寒,丁猛,等.高超声速飞行器动力系统研究进展[J].力学进展,2009,39(6):716-739.
- [15]黄伟,罗世彬,王振国.临近空间高超声速飞行器关键技术及展望[J].宇航学报,2010,31(5):1259-1265.
- [16] Curran, Edward T. Scramjet engines:The first forty years[J]. Journal of Propulsion&Power, 2001, 17(6):1138-1148.
- [17] Dejarnette F R, Cheatwood F M,Hamilton H H,et al. A review of some approximate methods used in aerodynamic heating analyses[J]. Journal of thermophysis and heat transfer,1987,1(1):5-12.
- [18] Bharani R, Raphael H, Bhavani S. Uncertainty analysis of integrated thermal protection system with rigid insulation bars[J]. current opinion in oncology,1990,2(5):919-923.
- [19] Ochoa O O. Functionally graded multi-functional hybrid composites for extreme environments[R]. Aust, TX:Texas A&M University,2010.
- [20] Wadley H N G, Miles R B, Evans A G. A magnetohydrodynamic power panel for space reentry vehicles[J]. Journal of Applied Mechanics,2007,74(1):57-64.
- [21] Gülhan A, Esser B, Koch U, et al. Experimental verification of heat-flux mitigation by electromagnetic fields in partially ionized-grgon flows[J]. Journal of Space-craft and Rockets,2009,46(2):274-283.
- [22] Gnoffo P A,Weilmuenster K J,Hamilton H H,et al.Computational aerothermodynamic design issues for hypersonic vehicles[J]. Journal of Space-craft&Rockets,1999,36(1):21-43.
- [23]桂业伟.高超声速飞行器综合热效应问题[J].中国科学:物理学力学天文学,2019,49(11):135-149.
- [24]孟松鹤,金华,王国林,等.热防护材料表面催化特性研究进展[J].航空学报,2013,35(2):287-302.
- [25] Chen Y K, Tahir G. Effect of nonequilibrium surface thermochemistry in simulation of carbon-based ablators[J]. Journal of Spacecraft&Rockets,2012,50(5):917-926.
- [26]孙长银,穆朝絮,余瑶.近空间高超声速飞行器控制的几个科学问题研究[J].自动化学报,2013,39(11):1901-1913.
- [27]杨志红.高超声速飞行器制导控制技术发展回顾与展望[J].战术导弹技术,2017(04):18-24.
- [28]孙向宇.高超声速飞行器制导控制一体化设计方法[D].哈尔滨:哈尔滨工业大学学位论文,2017.