绿色推进研究进展与挑战Research on the progress and challenges in green propulsion technology
郑日恒,刘方彬,姚兆普,王鹏,陈操斌,潘率诚
摘要(Abstract):
近年来,随着环保、低碳的要求越来越严格,绿色推进技术逐渐成为航空航天领域内的研究热点。梳理了航空电推进、低排放航空发动机、绿色吸气式高超声速推进、空间液体燃料推进等空天技术领域的研究进展和技术挑战,旨在为空天领域绿色推进技术的发展提供参考。首先,比较了航空电推进技术中的纯电推进技术、涡轮电推进技术和混合电推进技术这三种技术的研究现状,并提出了相应的研究热点问题。其次,总结了低排放航空发动机技术的贫油多级燃烧技术、富燃-淬熄-贫燃燃烧技术和其它新型燃烧技术等多种燃烧技术的研究现状和存在的技术挑战。然后,分析了绿色吸气式高超声速推进中当量比、燃料类型、燃烧室结构、发动机性能等因素对氮氧化物(NOx)排放的影响,并指出还存在着NOx排放的数值预测、NOx排放控制与发动机性能之间的关系等困难。最后,在对比分析不同绿色液体空间推进技术的基础上,总结分析了绿色单组元推进是目前技术成熟度最高的原因。而绿色双组元推进技术的技术路线,包括离子液体燃料空间推进技术和高含能密度烃类燃料空间推进技术,虽然具有较好的发展前景,但目前均仍处于初步研究阶段。此外,分析了电-化学双模式推进技术的挑战问题,这种绿色空间推进技术未来有希望获得重要应用。
关键词(KeyWords): 绿色推进;航空电推进;低排放航空推进;吸气式高超声速推进;空间推进;航空发动机
基金项目(Foundation):
作者(Author): 郑日恒,刘方彬,姚兆普,王鹏,陈操斌,潘率诚
DOI: 10.16338/j.issn.2097-0714.20220020
参考文献(References):
- [1]Bendtsen K M,Bengtsen E,Saber A T,et al.Areview of health effects associated with exposure to jet engine emissions in and around airports[J].Environmental Health,2021,20(1):10.
- [2]Lee D,Arrowsmith S,Skowron A,et al.Updated analysis of the non-CO2climate impacts of aviation and potential policy measures pursuant to EU emissions trading system directive article 30(4)[P/OL].https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:52020SC0277&from=EN/,2022-2-13.
- [3]Lee D S,Fahey D W,Skowron A,et al.The contribution of global aviation to anthropogenic climate forcing for 2000 to 2018[J].Atmospheric Environment,2021,244:117834.
- [4]European commission.Updated analysis of the non-CO2climate impacts of aviation and potential policy measures pursuant to EU emissions trading system directive article30(4)[P/OL].https://eur-lex.europa.eu/legalcontent/EN/TXT/HTML/?uri=CELEX:52020DC0747&from=EN/,2022-2-13.
- [5]Arrowsmith S,Lee D S,Owen B,et al.Report from the commission to the European parliament and the council:Updated analysis of the non-CO2climate impacts of aviation and potential policy measures pursuant to EU emissions trading system directive article30(4),Part1/3[P/OL].https://eur-lex.europa.eu/resource.html?uri=cellar:7bc666c9-2d9c-11ebb27b-01aa75ed71a1.0001.02/DOC_1&format=PDF/,2022-2-18.
- [6]ICAO.Committee on aviation environmental protection(CAEP)[P/OL].https://www.icao.int/environmentalprotection/Pages/Caep.aspx/,2022-2-18.
- [7]Quadros F D,Snellen M,Dedoussi I C.Recent and projected trends in global civil aviation fleet average NOx emissions indices[C].AIAA Scitech 2022 Forum,San Diego,CA&Virtual,2021-01.
- [8]Cumpsty N,Mavris D,Kirby M.Aviation and the environment:Outlook[P/OL].https://www.icao.int/environmental-protection/Documents/Environmental Rep orts/2019/ENVReport2019_pg24-38.pdf/,2022-2-18.
- [9]Europeancommission.Reducing emissions from aviation[P/OL].https://ec.europa.eu/clima/eu-action/transportemissions/reducing-emissions-aviation_en/,2022-2-13.
- [10]Gür?am S,Konuralp E,Ekici S.Determining the effect of air transportation on air pollution in the most polluted city in Turkey[J].Aircraft Engineering and Aerospace Technology,2021,93(2):354-362.
- [11]Eu.Proposal for a regulation of the European parliament and of the council:Amending directive 2003/87/EC to continue current limitations of scope for aviation activities and to prepare to implement a global marketbased measure from 2021[P/OL].https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52017PC0054&from=EN/,2022-2-18.
- [12]廖忠權.支线客机的混合电推进之路[J].航空动力,2019(5):61-64.
- [13]罗彧.混合电推进:推进技术发展的重要方向[J].航空动力,2019(5):60.
- [14]Bowman C L,Marien T V,Felder J L.Turbo and hybrid-electrified aircraft propulsion for commercial transport[R].Cincinnati,Ohio:2018 AIAA/IEEEElectric Aircraft Technologies Symposium,2018.
- [15]王鹏,鞠新,郑天慧,等.航空混合电推进系统的发展现状及应用前景[J].燃气涡轮试验与研究,2021,34(2):52-57.
- [16]Kate O.Rolls-Royce announces hybrid-electric demonstrator[P/OL].https://www.avweb.com/ownership/engines/rolls-royce-announces-hybrid-electric-demons trator/,2022-2-13.
- [17]王鹏,鞠新,郑天慧,等.航空混合电推进系统的发展现状及应用前景[J].燃气涡轮试验与研究,2021,34(2):52-57.
- [18]Scheidler J J,Tallerico T F,Miller W A.Progress toward the critical design of the superconducting rotor for NASA’s 1.4 MW high-efficiency electric machine[P/OL].https://www.nasa.gov/centers/glenn/,2022-2-13.
- [19]Huang Y,Yang V.Dynamics and stability of leanpremixed swirl-stabilized combustion[J].Progress in Energy and Combustion Science,2009,35(4):293-364.
- [20]Muzio L J,Quartucy G C.Implementing NOx control:Research to application[J].Progress in Energy and Combustion Science,1997,23(3):233-266.
- [21]Lefebvre A H,Ballal D R.Gas turbine combustion:Alternative fuels and emissions[M].Boca Raton:CRCpress,2010.
- [22]张弛,林宇震,徐华胜,等.民用航空发动机低排放燃烧室技术发展现状及水平[J].航空学报,2014,35(2):332-350.
- [23]Dhanuka S K,Temme J E,Driscoll J F,et al.Vortexshedding and mixing layer effects on periodic flashback in a lean premixed prevaporized gas turbine combustor[J].Proceedings of the Combustion Institute,2009,32(2):2901-2908.
- [24]林宏军,常峰,程明.GE公司低排放燃烧室发展概述[J].航空动力,2019(1):31-36.
- [25]ICAO.Aircraft engine emissions databank[J].Aircraft Engine Emissions Databank,2006,22.
- [26]Mongia H C.Novel combustion concepts for sustainable energy development[M].New Delhi:Springer,2014:113-176.
- [27]Moran J.Engine technology development to address local air quality concerns[R].vydáno:Presentation at ICAOColloquium on Aviation Emissions with Exhibition,2007.
- [28]Nickolaus D A,Crocker D S,Black D L,et al.Development of a lean direct fuel injector for low emission aero gas turbines[C].Amsterdam,Proceedings of the ASME Turbo Expo 2002,Amsterdam,the Netherlands,June 3-6,2002.
- [29]Tacina K M,Wey C.NASA glenn high pressure low NOx emissions research[R].Cleveland,Ohio:NASA/TM-2008-214974,2008.
- [30]Micklow G J,Roychoudhury S,Nguyen H L,et al.Emissions reduction by varying the swirler airflow split in advanced gas turbine combustors[J].Journal of Engineering for Gas Turbines and Power,1993,115(3):563-569.
- [31]Zhao D,Gutmark E,de Goey P.A review of cavitybased trapped vortex,ultra-compact,high-g,interturbine combustors[J].Progress in Energy and Combustion Science,2018,66:42-82.
- [32]Bucher J,Edmonds R G,Steele R C,et al.The development of a lean-premixed trapped vortex combustor[J].Proceedings of the ASME Turbo Expo2003(1):207-213.
- [33]Akdeniz H Y.Estimation of aircraft turbofan engine exhaust emissions with environmental and economic aspects at a small-scale airport[J].Aircraft Engineering and Aerospace Technology,2021,94(2):176-186.
- [34]Pandey V,Badruddin I A,Terfasa T T,et al.Experimental investigation of the impact of Ce O2nanoparticles in Jet-A and Jatropha-SPK blended fuel in an aircraft can-combustor at flight conditions[J].Fuel,2022,1(317).
- [35]Balaji V,Kaliappan S,Madhuvanesan D M,et al.Combustion analysis of biodiesel-powered propeller engine for least environmental concerns in aviation industry[J].Aircraft Engineering and Aerospace Technology,2022(ahead-of-print).
- [36]Genova T,Otero M,Morales A,et al.Preheating and premixing effects on NOx emissions in a high-pressure axially staged combustor[J].Combustion and Flame,2022,235:111710.
- [37]Peebles C.The X-43A flight research program:Lessons learned on the road to Mach 10[EB/OL].2010(2022).https://ntrs.nasa.gov/api/citations/20070021686/downloads/20070021686.pdf.
- [38]Kelly C E.Boeing X-51A waverider breaks record in 1st flight[P/OL].https://boeing.mediaroom.com/2010-05-26-Boeing-X-51A-Wave Rider-Breaks-Record-in-1st-Flight/,2022-2-18.
- [39]Ingenito A.Impact of hydrogen fueled hypersonic airliners on the O3layer depletion[J].International Journal of Hydrogen Energy,2018,43(50):22694-22704.
- [40]Ingenito A.NOx reduction strategies in scramjet combustors[J].Aerospace Science and Technology,2016,59:189-198.
- [41]Ingenito A,Agresta A,Andriani R,et al.Preliminary analysis of strategies for NOx reduction[C].53rd AIAAAerospace Sciences Meeting,Kissimmee,Florida,January 5-9,2015.
- [42]Rashwan S S,Nemitallah M A,Habib M A.Review on premixed combustion technology:Stability,emission control,applications,and numerical case study[J].Energy&Fuels,2016,30(12):9981-10014.
- [43]Arshad M,Micklow G J.Analysis of hydrogen enrichment in gasoline fueled premixed spark-ignition engine[J].Journal of Multidisciplinary Engineering Science and Technology,2017,4(9):8256-8264.
- [44]Lieuwen T C,Yang V.Combustion instabilities in gas turbine engines:Operational experience,fundamental mechanisms and modeling[M].America:American Institute of Aeronautics and Astronautics,2005.
- [45]Corin S.The scramjet engine:Processes and characteristics[M].Cambridge:Cambridge University Press,2009.
- [46]包恒.低飞行马赫数下煤油超燃冲压发动机的直接点火[D].长沙:国防科技大学,2017.
- [47]Ma F,Li J,Yang V,et al.Thermoacoustic flow instability in a scramjet combustor[C].41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference&Exhibit,Tucson,Arizona,July 10-13,2005.
- [48]申泮文,编著.氢与氢能21世纪的动力[M].天津:南开大学出版社,2000:185.
- [49]Poinsot T,Candel S,TrouvéA.Applications of direct numerical simulation to premixed turbulent combustion[J].Progress in Energy and Combustion Science,1995,21(6):531-576.
- [50]Pindilli E.Applications for the environment:Real-time information synthesis(AERIS)-benefit-cost analysis[EB/OL].https://www.its.dot.gov/presentations/pdf/AERIS_BCA_webinar_10-17-12.pdf/,2022.
- [51]Ghenai C,Zbeeb K,Janajreh I.Combustion of alternative fuels in vortex trapped combustor[J].Energy Conversion and Management,2013,65:819-828.
- [52]Bicer Y,Dincer I.Life cycle evaluation of hydrogen and other potential fuels for aircrafts[J].International Journal of Hydrogen Energy,2017,42(16):10722-10738.
- [53]Viola N,Fusaro R,Saracoglu B,et al.Main challenges and goals of the H2020 stratofly project[J].Aerotecnica Missili&Spazio,2021,100(2):95-110.
- [54]Roquemore W,Shouse D,Burrus D,et al.Vortex combustor concept for gas turbine engines[C].39th Aerospace Sciences Meeting and Exhibit,Reno,NV,January 8-13,2012.
- [55]Roncioni P,Natale P,Marini M,et al.Numerical simulations and performance assessment of a scramjet powered cruise vehicle at Mach 8[J].Aerospace Science and Technology,2015,42:218-228.
- [56]Kindler M,Gerlinger P,Aigner M.Numerical investigations of NOx-formation in scramjet combustors using wall and strut injectors[R].49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition,Orlando,Florida,2011-01.
- [57]Jachimowski C J.An analytical study of the hydrogen-air reaction mechanism with application to scramjet combustion[R].Hampton,Virginia:NASA Center for Aerospace Information(CASI),1988.
- [58]Evans J S,Schexnayder C J.Influence of chemical kinetics and unmixedness on burning in supersonic hydrogen flames[J].AIAA Journal,1980,18(2):188-193.
- [59]Starik A,Titova N.Initiation of combustion and detonation in H2+O2mixtures by excitation of electronic states of oxygen molecules[R].Moscow,Russia:High Speed Deflagration and Detonation:Fondamentales and Control,2001.
- [60]邓同晔,徐庆尧,沈双晏.NOx对甲烷点火延迟时间影响的数值研究[J].兵工学报,2017,38(3):476-482.
- [61]郭鹏,陈正.NOx对甲烷/空气着火过程的影响[J].燃烧科学与技术,2010,16(5):472-476.
- [62]Guo P,Chen Z.Ignition enhancement of ethylene/air by NOx addition[J].Chinese Journal of Aeronautics,2013,26(4):876-883.
- [63]Takita K,Abe N,Masuya G,et al.Ignition enhancement by addition of NO and NO2from a N2/O2plasma torch in a supersonic flow[J].Proceedings of the Combustion Institute,2007,31(2):2489-2496.
- [64]Abe N,Ohashi R,Takita K,et al.Effects of NOx and HO2on plasma ignition in a supersonic flow[C].14th AIAA/AHI Space Planes and Hypersonic Systems and Technologies Conference,Canberra,Australia,Nov6-9,2006.
- [65]Laster W R,Sojka P E.Autoignition of H2-air-The effect of NOx addition[J].Journal of Propulsion and Power,1989,5(4):385-390.
- [66]Takita K,Morinaga A,Someya T.Effect of a small amount of NOx on extinction limit of lean premixed counterflow flame[J].Proceedings of the Combustion Institute,2011,33(1):1179-1186.
- [67]张晓源,覃粒子,刘宇,等.离解组分复合对超燃尾喷管性能的影响[J].推进技术,2013,34(5):589-594.
- [68]Chiappetta L M,Sangiovanni J J.Estimates of oxides of nitrogen formed in a scramjet inlet[J].Journal of Propulsion and Power,1991,7(5):678-683.
- [69]Steelant J.Sustained hypersonic flight in Europe:Technology drivers for LAPCAT II[C].16th AIAA/DLR/DGLR International Space Planes and Hypersonic Systems and Technologies Conference,Bremen,Germany,2009-10.
- [70]Spalart P,Allmaras S.A one-equation turbulence model for aerodynamic flows[C].30th Aerospace Sciences Meeting and Exhibit,Reno,NV,1992-01.
- [71]Forsythe J R,Hoffmann K A,Cummings R M,et al.Detached-eddy simulation with compressibility corrections applied to a supersonic axisymmetric base flow[J].Journal of Fluids Engineering,2002,124(4):911-923.
- [72]Grasso F,Marini M,Ranuzzi G,et al.Shock-wave/turbulent boundary-layer interactions in nonequilibrium flows[J].AIAA Journal,2001,39(11):2131-2140.
- [73]Kindler M,Rust B,Gerlinger P,et al.High performance computing in science and engineering[M].Berlin,Heidelberg:Springer,2010:197-207.
- [74]Buekens A.Combustion:Physical and chemical fundamentals,modeling and simulation,experiments,pollutant formation[J].International Journal of Environment&Pollution,2002,17(3):291.
- [75]Slack M,Grillo A.Investigation of hydrogen-air ignition sensitized by nitric oxide and by nitrogen dioxide[R].United States:NASA CR 2896,1977.
- [76]Sabatino D,Scott D.High temperature heat exchanger development[R].East Hartford:United Technologies Research Center,SP2018_423,2018.
- [77]Jivraj F,Varvill R,Bond A,et al.The scimitar precooled Mach 5 engine[C].2nd European Conference for Aero-space Sciences(EUCASS),Brussels,Belgium,2007-07.
- [78]邹正平,王一帆,额日其太,等.高超声速强预冷航空发动机技术研究进展[J].航空发动机,2021,47(4):8-21.
- [79]Tanbay T,Uca M B,Durmayaz A.Assessment of NOx emissions of the Scimitar engine at Mach 5 based on a thermodynamic cycle analysis[J].International Journal of Hydrogen Energy,2020,45(5):3632-3640.
- [80]Sato T,Tanatsugu N,Hatta H,et al.Development study of the ATREX engine for TSTO spaceplane[C].10th AIAA/NAL-NASDA-ISAS International Space Planes and Hypersonic Systems and Technologies Conference,Kyoto,Japan,April 24-17,2001.
- [81]Taguchi H,Harada K,Kobayashi H,et al.Firing test of a hypersonic turbojet engine installed on a flight test vehicle[C].16th AIAA/DLR/DGLR International Space Planes and Hypersonic Systems and Technologies Conference,Bremen,Germany,October 19-22,2009.
- [82]Wakabayashi S,Yoshida H,Chiga T,et al.Research and development of ramjet engine for high-mach integrated control experiment(HIMICO)[C].22nd AIAA International Space Planes and Hypersonics Systems and Technologies Conference,Orlando,2018-09.
- [83]Taguchi H,Harada K,Kobayashi H,et al.Mach 4wind tunnel experiment of hypersonic pre-cooled turbojet engine[C].19th AIAA International Space Planes and Hypersonic Systems and Technologies Conference,Atlanta,GA,June 16-20,2014.
- [84]Taguchi H,Hongoh M,Kojima T,et al.Mach 4performance evaluation of hypersonic pre-cooled turbojet engine[C].22nd AIAA International Space Planes and Hypersonics Systems and Technologies Conference,Orlando,FL,2018-09.
- [85]佐藤哲也,田口秀之,小林弘明.航天运输机吸气式发动机的研制与研究(译)[C].日本宇宙航空研究开发机构宇宙科学研究所,日本,2021-01.
- [86]Bodin P,Larsson R,Nilsson F,et al.PRISMA:An in-orbit test bed for guidance,navigation,and control experiments[J].Journal of Spacecraft and Rockets,2009,46(3):615-623.
- [87]Yao Z,Zhang W,Wang M,et al.Tunable diode laser absorption spectroscopy measurements of high-pressure ammonium dinitramide combustion[J].Aerospace Science and Technology,2015,45:140-149.
- [88]Zhang T,Li G,Yu Y,et al.Numerical simulation of ammonium dinitramide(ADN)-based non-toxic aerospace propellant decomposition and combustion in a monopropellant thruster[J].Energy Conversion and Management,2014,87:965-974.
- [89]Chen J,Li G,Zhang T,et al.Experimental investigation of the catalytic decomposition and combustion characteristics of a non-toxic ammonium dinitramide(ADN)-based monopropellant thruster[J].Acta Astronautica,2016,129:367-373.
- [90]Jing L,You X,Huo J,et al.Experimental and numerical studies of ammonium dinitramide based liquid propellant combustion in space thruster[J].Aerospace Science and Technology,2017,69:161-170.
- [91]Negri M,Wilhelm M,Hendrich C,et al.New technologies for ammonium dinitramide based monopropellant thrusters-The project RHEFORM[J].Acta Astronautica,2018,143:105-117.
- [92]Wilhelm M,Negri M,Ciezki H,et al.Preliminary tests on thermal ignition of ADN-based liquid monopropellants[J].Acta Astronautica,2019,158:388-396.
- [93]Negri M,Wilhelm M,Ciezki H K.Thermal ignition of ADN-based propellants[J].Propellants,Explosives,Pyrotechnics,2019,44(9):1096-1106.
- [94]李雷,李国岫,李洪萌,等.不同电极材料下ADN基液体推进剂电点火特性的实验研究[J].推进技术,2020,41(1):65-72.
- [95]Berg S P.Development of ionic liquid multi-mode spacecraft micropropulsion systems[D].Missouri:Missouri University of Science and Technology,2015.
- [96]Berg S P,Rovey J L.Assessment of multimode spacecraft micropropulsion systems[J].Journal of Spacecraft and Rockets,2017,54(3):592-601.
- [97]Berg S P,Rovey J.Performance analysis of an integrated multi-mode chemical monopropellant inductive plasma thruster[C].49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference,San Jose,CA;AIAA,2013:16.
- [98]Rasmont N,Broemmelsiek E J,Rovey J L.Linear burn rate of green ionic liquid multimode monopropellant[J].Combustion and Flame,2020,219:212-224.
- [99]王文涛,马智勇,丛伟民,等.一种多任务模式离子液体推进剂的制备、表征及催化分解研究[J].推进技术,2020,41(2):455-460.
- [100]Li S,Yan H,Wang Z,et al.Catalytic decomposition and burning of a dual-mode ionic liquid propellant[J].Energy&Fuels,2021,35(22):18716-18725.