空间目标在轨捕获方法及关键技术综述Review of on-orbit capture methods and key technologies of space target
满万鑫,李新洪,周思引,王训,张治彬
摘要(Abstract):
空间活动的日益加剧,使得空间在轨组装、在轨服务得到了大力发展。同时,空间碎片也成为了执行空间任务的一个巨大威胁。围绕以上领域涉及的共同关键技术——空间在轨捕获,提出了一种新的空间目标捕获分类形式。根据空间目标捕获装置末端执行机构的设计特点,将目标捕获方式总结归纳为插入式、抓取式、包络式(覆盖式)、吸附式和混合式。分别详述了每种方法的捕获原理、优缺点和发展趋势,并对涉及到的相关国内外研究项目进行了介绍。对捕获过程中的接触动力学特性、空间目标状态估计与参数辨识、目标消旋技术以及组合航天器动力学控制这四个关键技术内容进行了介绍,并就未来在轨捕获发展趋势给出了相关建议。
关键词(KeyWords): 在轨捕获;空间碎片;组合航天器;接触动力学;消旋;捕获后控制
基金项目(Foundation):
作者(Author): 满万鑫,李新洪,周思引,王训,张治彬
DOI: 10.16338/j.issn.2097-0714.20220153
参考文献(References):
- [1]沈晓凤,曾令斌,靳永强,等.在轨组装技术研究现状与发展趋势[J].载人航天,2017,23(2):228-244.
- [2]陈罗婧,郝金华,袁春柱,等.“凤凰”计划关键技术及其启示[J].航天器工程,2013,22(5):119-128.
- [3]陈小前,袁建平.航天器在轨服务技术[M].北京:中国宇航出版社,2009.
- [4]翟光,仇越,梁斌,等.在轨捕获技术发展综述[J].机器人,2008,30(5):467-480.
- [5]孙永军,王钤,刘伊威,等.空间非合作目标捕获方法综述[J].国防科技大学学报,2020,42(3):74-90.
- [6]梁斌,徐文福.空间机器人:建模、规划与控制[M].北京:清华大学出版社,2017.
- [7]李新刚,裴胜伟.国外航天器在轨捕获技术综述[J].航天器工程,2013,22(1):113-119.
- [8] Bourdon J, Ganet S M, Delpy P R, et al. Position control design and validation applied to ATV during docking to ISS[C]. IFAC Automatic Control in Aerospace,Saint-Petersburg,Russia,2004.
- [9] Zhao Y,Tian H,Wang Q S. Analysis of dynamometry scheme for semi-physical simulation platform of space docking mechanism[J]. Advances in Engineering Software,2006,38(2007):710-716.
- [10] Feng F,Tang L N,Xu J F,et al. A review of the endeffector of large space manipulator with capabilities of misalignment tolerance and soft capture[J]. Science CHINA Technological Sciences, 2016, 59(11):1621-1638.
- [11] Cook J, Aksamentov V, Hoffman T, et al. ISS interface mechanisms and their heritage[C]. AIAA SPACE 2011 Conference&Exposition, California,2011.
- [12] Yu D Y,Chen W F,Li H R. Error modeling of parallel robots for semi-physical simulation platform of space docking mechanism[J]. Procedia Engineering, 2011,15(2001):431-435.
- [13]王巍,于文鹏,李雄峰,等.多维大偏差刚性对接研究及机构设计[J].航空学报,2010,31(9):1872-1879.
- [14]张崇峰,陈宝东,郑云青,等.航天器对接机构[M].北京:科学出版社,2016.
- [15] Fehse W,著.李东旭,李智,译.航天器自主交会对接技术[M].长沙:国防科学技术大学出版社,2009.
- [16] Pavlich J,Tchoryk P,Hays A,et al. KC-135 zero G testing of a micro satellite docking mechanism[C]. Space Systems Technology and Operations,Orlando,2003.
- [17] Boesso A, Francesconi A. ARCADE small-scale docking mechanism for micro-satellites[J]. Acta Astronautica,2013,86:77-87.
- [18] Medina A,Tomassini A,Suatoni M,et al. Towards a standardized grasping and refuelling on-orbit servicing for geo spacecraft[J]. Acta Astronautica,2017,134:1-10.
- [19]黄剑斌,黄龙飞,韩旭,等.对卫星柔性对接补加一体化机构建模与设计[J].空间控制技术与应用,2018,44(5):30-37.
- [20] Lai Y N,Dai Y,Tian H,et al. Design of an automatic autonomous mini prone-cone micosatellite docking mechanism[J]. Chinese Journal of Mechanical Engineering,2010,23(3):353-360.
- [21]姜博文.模块化柔性捕获与对接机构研究[D].哈尔滨:哈尔滨工业大学,2019.
- [22] Yan X T, Brinkmann W, Palazzetti R, et al.Integrated mechanical, thermal, data, and power transfer interfaces for future space robotics[J]. Frontiers in Robotics and AI,2018,5:1-16.
- [23] Westley D M, Grau J, Jordan L, et al. Modular spacecraft standards:Supporting low-cost, responsive space[C]. Space 2004 Conference and Exhibit,2004.
- [24] Wenzel W, Cordes F, Kirchner F. A robust electromechanical interface for cooperating heterogeneous multi-robot teams[C]. 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems,2015.
- [25] Wadomeit A,Reimerdes H-G,Lakshmanan M,et al.Structural concept and design for modular and serviceable spacecraft systems[C]. 54th AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics,and Materials Conference,Boston,Massachusetts,2013.
- [26] Li X P, Wang W, Shi J, et al. Design, analysis of self-configurable modular adjustable latch lock for segmented space mirrors[J]. Optics Express,2018,26(14):18064-18081.
- [27] Jankovic M, Brinkmann W, Bartsch S. Concepts of active payload modules and end-effectors suitable for standard interface for robotic manipulation of payloads in future space missions(SIROM)interface[C]. 2018IEEE Aerospace Conference,2018.
- [28] Vinals J,Urgoiti E,Guerra G,et al. Multi-functional interface for flexibility and reconfigurability of future European space robotic systems[J]. Advances in Astronautics Science and Technology, 2018, 1(1):119-133.
- [29] Rodgers L P. Concepts and technology development for the autonomous assembly and reconfiguration of modular space systems[D]. Cambridge:Massachusetts Institute of Technology,2006.
- [30] Weise J, Brie K, Adomeit A, et al. An intelligent building blocks concept for on-orbit-satellite servicing[C]. Proceedings of the International Symposium on Artificial Intelligence, Robotics and Automation in Space,2012.
- [31] Kaiser C, Sjberg F, Delcura J M, et al. SMARTOLEV—An orbital life extension vehicle for servicing commercial spacecrafts in GEO[J]. Acta Astronautica,2008,63(1-4):400-410.
- [32] Zhang Y,Sun K,Liu H,et al. Pose measurement of nozzle based on laser range finders for capturing satellite[J]. Proceedings of the Institution of Mechanical Engineers,Part G:Journal of Aerospace Engineering,2015,230(8):1385-1396.
- [33] Reed J,Barraclough S. Development of harpoon system for capturing space debris[C]. 6th European Conference on Space Debris,2013.
- [34] Aglietti G S, Taylor B, Fellowes S, et al. Remove DEBRIS:An in-orbit demonstration of technologies for the removal of space debris[J]. The Aeronautical Journal,2019,124(1271):1-23.
- [35] Yoshida K. Engineering test satellite VII flight experiments for space robot dynamics and control:Theories on laboratory test beds ten years ago, now in orbit[J]. The International Journal of Robotics Research,2016,22(5):321-335.
- [36] Piedbdeuf J C, Dec J, Aghili F, et al. Task verification facility for the Canadian special purpose dexterous manipulator[C]. Proceedings of IEEE International Conference on Robotics and Automation,1999.
- [37] Stamm S,Motaghedi P. Orbital express capture system:Concept to reality[C]. Proceedings of SPIE-Spacecraft Platforms and Infrastructure,2004.
- [38] Reintsema D,Thaeter J,Rathke A,et al. DEOS—The German robotics approach to secure and de-orbit malfunctioned satellites from low earth orbits[C].Proceedings of the I-SAIRAS,2010.
- [39] Li S,She Y. Recent advances in contact dynamics and post-capture control for combined spacecraft[J].Progress in Aerospace Sciences,2021,120:100678.
- [40] Flores A A,Ma O,Pham K,et al. A review of space robotics technologies for on-orbit servicing[J]. Progress in Aerospace Sciences,2014,68:1-26.
- [41] Biesbroek R,Soares T,Husing J,et al. The e. Deorbit CDF study:A design study for the safe removal of a large space debris[C]. Proceedings of 6th European Conference on Space Debris,2013.
- [42] John R. Spacecraft robotic capture tool[C]. Proceedings of e. Deorbit Symposium,2014.
- [43] Wieser M,Richard H,Hausmann G,et al. e. Deorbit mission:OHB debris removal concepts[C]. ASTRA2015-13th Symposium on Advanced Space Technologies in Robotics and Automation,2015.
- [44]潘正伟.空间非合作目标捕获机构设计及动力学分析[D].南京:南京航空航天大学,2017.
- [45] Bischof B, Kerstein L. ROGER robotic geostationary orbit restorer[J]. Science and Technology Series,2004,109:183-193.
- [46] Kawamoto S, Makida T, Sasaki F, et al. Precise numerical simulations of electrodynamic tethers for an active debris removal system[J]. Acta Astronautica,2006,59(1):139-148.
- [47] Huang P F,Zhang F,Chen L,et al. A review of space tether in new applications[J]. Nonlinear Dynamics,2018,94:1-19.
- [48]于洋,宝音贺西,李俊峰.空间飞网抛射展开动力学建模与仿真[J].宇航学报,2010,31(5):1289-1296.
- [49]郭吉丰,王班,谭春林,等.空间非合作目标物柔性捕获技术进展[J].宇航学报,2020,41(2):125-135.
- [50]谭春林,刘永健,祁玉峰,等.绳网式空间碎片抓捕与清除系统[P].中国:201310503724,2015-09-23.
- [51] Aglietti G, Taylor B, Fellowes S, et al. The active space debris removal mission RemoveDebris. Part 2:In orbit operations[J]. Acta Astronautica, 2020, 168:310-322.
- [52] Pearson J, Carroll J, Levin E. Active space debris removal:EDDE, the electrodynamic debris eliminator[C]. The 61st International Astronautical Congress,2010.
- [53] Mao H,Sinn T,Vasile M,et al. Post-launch analysis deployment dynamics of a space web sounding rocket experiment[J]. Acta Astronautica, 2016, 127:345-358.
- [54] Summerer L,Putz B,Kopacek P,et al. Robots moving on a loose net in microgravity-results from the Japanese furoshiki sounding rocket experiment[C]. The 9th ESA Workshop off Advanced Space Technologies for Robotics and Automation,2006.
- [55]马骏,黄攀峰,孟中杰,等.自主机动空间绳网机器人设计与动力学建模[J].宇航学报,2013, 34(10):1316-1322.
- [56]王班,易琳,郭吉丰.空间绳网机器人的张力控制机构研制与性能研究[J].浙江大学学报(工学版),2015,49(10):1974-1981.
- [57] Hoyt R. Space debris mitigation technologies[P/OL].http://www. tethers. com/paper/DeorbitTechnologies.pdf/,2019.
- [58] Richard M,Kronig L,Belloni F,et al. Uncooperative rendezvous and docking for microSat:The case for cleanspace one[C]. Proceedings of 6th International Conference on Recent Advances in Space Technologies,2013.
- [59] Araromi O A, Gavrilovich I, Shintake J, et al.Rollable multisegment dielectric elastomer minimum energy structures for a deployable microsatellite gripper[J]. IEEE/ASME Transactions on Mechatronics,2015,20(1):438-446.
- [60]韩大为,唐平,杨新海,等.一种可卷曲的半刚性网爪捕获机构:中国,201320740603. 6[P]. 2013-11-20.
- [61] Brophy J R,Friedman L,Culick F. Asteroid retrieval feasibility[C]. IEEE Aerospace Conference Proceedings,2012.
- [62] Miller D W, Sedwick R J, Kong E M C, et al.Electromagnetic formation flight for sparse aperture telescopes[C]. Aerospace Conference Proceedings,2002.
- [63] Ocampo C, Williams J. Electromagnetically guided autonomous docking and separation in micro-gravity[R].Texas:University of Texas,2005.
- [64] Fredrickson S, Mitchell J. Managing technology development:Insights from the mini AERCam R&D project[R]. Houston:NASA Johnson Space Center,2006.
- [65] Underwood C,Pellegrino S,Lappas V J,et al. Using cubesat/micro-satellite technology to demonstrate the autonomous assembly of a reconfigurable space telescope(AAReST)[J]. Acta Astronautica,2015,114:112-122.
- [66] Romanishin J W, Gilpin K, Claici S, et al. 3D MBlocks:Self-reconfiguring robots capable of locomotion via pivoting in three dimensions[C]. 2015 IEEE International Conference on Robotics and Automation(ICRA),2015.
- [67] Yu Z,Wang Z,Rui L,et al. Stable gait planning for a gecko-inspired robot to climb on vertical surface[C].IEEE International Conference on Mechatronics&Automation,2013.
- [68] Kim S, Trujillo S, Cutkosky M. Smooth vertical as attachment materials for climbing robots[J]. IEEE Transactions on Robotics,2008,24(1):65-75.
- [69] Jiang H, Hawkes E, Arutyunov V, et al. Scaling controllable adhesives to grapple floating objects in space[C]. 2015 IEEE International Conference on Robotics and Automation(ICRA),2015.
- [70] Guo J L, Leng J S, Rossiter J. Electroadhesion technologies for robotics:A comprehensive review[J].IEEE Transactions on Robotics,2020,36(2):313-327.
- [71] Dadkhah M, Ruffatto D, Zhao Z, et al. Increasing adhesion via a new electrode design and improved manufacturing in electrostatic/microstructured adhesives[J]. Journal of Electrostatics,2018,91:48-55.
- [72] Leung B C,Goeser N R,Miller L A,et al. Validation of electroadhesion as a docking method for spacecraft and satellite servicing[C]. IEEE Aerospace Conference,2015.
- [73] Ritter M, Barnhart D. Geometry characterization of electroadhesion samples for spacecraft docking application[C]. IEEE Aerospace Conference,2017.
- [74] Stoneking E. Newton-Euler dynamic equations of motion for a multi-body spacecraft[C]. AIAA Guidance,Navigation and Control Conference and Exhibit,2007.
- [75] Nenchev D, Umetani Y, Yoshida K. Analysis of a redundant free-flying spacecraft/manipulator system[J].IEEE Transactions on Robotics and Automation,1992,8(1):1-6.
- [76] Vafa Z,Dubowsky S. On the dynamics of manipulators in space using the virtual manipulator approach[C].IEEE International Conference on Robotics&Automation,1987.
- [77] She Y, Li S. An extra degree-of-freedom model for combined spacecraft attitude control with unilateral contact constraint[J]. Acta Astronautica, 2019, 165(12):54-67.
- [78] Diakov P A, Malashin A A, Smirnov N N. Dynamic processes in the tether of a space tethered system[J].Acta Astronautica,2019,163(A):100-106.
- [79] Shabana A A. Dynamics of multibody systems[M]. New York:Cambridge University Press,2005.
- [80]田强,刘铖,李培,等.多柔体系统动力学研究进展与挑战[J].动力学与控制学报,2017, 15(5):385-405.
- [81] Shabana A A. Uniqueness of the geometric representation in large rotation finite element formulations[J]. Journal of Computational and Nonlinear Dynamics, 2010, 5:044501.
- [82]孙加亮,田强,胡海岩.多柔体系统动力学建模与优化研究进展[J].力学学报,2019,51(6):1565-1586.
- [83] Sugiyama H, Suda Y. A curved beam element in the analysis of flexible multi-body systems using the absolute nodal coordinates[J]. Proceedings of the Institution of Mechanical Engineers, Journal of Multibody Dynamics,2007,221(2):219-231.
- [84] Gerstmayr J,Shabana A A. Analysis of thin beams and cables using the absolute nodal co-ordinate formulation[J]. Nonlinear Dynamics, 2006, 45(1-2):109-130.
- [85] Corral E, Moreno R G, Gom ez G M J. Nonlinear phenomena of contact in multibody systems dynamics:A review[J]. Nonlinear Dynamics, 2021, 104(2):1269-1295.
- [86]王晓军,王琪.含摩擦与碰撞平面多刚体系统动力学线性互补算法[J].力学学报,2015,47(5):814-821.
- [87] Mazhar H,Heyn T,Negrut D,et al. Using Nesterov's method to accelerate multibody dynamics with friction and contact[J]. ACM Transactions on Graphics(TOG),2015,34(3):1-14.
- [88] Flores P, Lankarani H M. Contact force models for multibody dynamics[M]. Switzerland:Springer International Publishing AG Switzerland,2016.
- [89] Machado M, Moreira P, Flores P. Compliant contact force models in multibody dynamics:Evolution of the Hertz contact theory[J]. Mechanism and Machine Theory,2012,53:99-121.
- [90]丁千,翟红梅.机械系统摩擦动力学研究进展[J].力学进展,2013,43(1):112-131.
- [91] Bo L C,Pavelescu D. The friction-speed relation and its influence on the critical velocity of the stick-slip motion[J]. Wear,1982,82(3):277-289.
- [92] Haessig D A, Friedland B. On the modeling and simulation of friction[J]. Journal of Dynamic Systems,Measurement, and Control, 1991, 113(3):354-362.
- [93] Swevers J, Al-bender F. An integrated friction model structure with improved presliding behavior for accurate friction compensation[J]. IEEE Transactions on Automatic Control,2000,45(4):675-686.
- [94] Choi J J, Han S I, Kim J S. Development of a novel dynamic friction model and precise tracking control using adaptive back-stepping sliding mode controller[J].Mechatronics,2006,16(2):97-104.
- [95]张元文.空间电磁对接/分离动力学与控制研究[D].长沙:国防科学技术大学,2013.
- [96] Autumn K, Liang Y A, Hsieh S T, et al. Adhesive force of a single gecko foot-hair[J]. Nature,2000,405(6787):681-685.
- [97]戴振东,彭福军.空间机器人的研究与仿壁虎机器人关键技术[J].科学通报,2015,60(32):3114-3124.
- [98]毛建军.基于静电吸附的触觉力反馈手部可穿戴设备[D].哈尔滨:哈尔滨工业大学,2020.
- [99]王大轶,胡启阳,胡海东,等.非合作航天器自主相对导航研究综述[J].控制理论与应用,2018,35(10):1392-1404.
- [100] Opromolla R,Fasano G,Rufino G,et al. A review of cooperative and uncooperative spacecraft pose determination techniques for close-proximity operations[J]. Progress in Aerospace Sciences,2017,93:53-72.
- [101] Wang D Y, Hu Q Y, Hu H D, et al. Review of relative navigation for noncooperative spacecraft in close range[C]. Proceedings of 2020 Chinese Intelligent Systems Conference, Volume II,Singapore,2021.
- [102]马广富,郭延宁,邱爽,等.空间非合作目标消旋技术研究现状总结与展望[J].飞控与探测,2018,1(1):26-33.
- [103]路勇,刘晓光,周宇,等.空间翻滚非合作目标消旋技术发展综述[J].航空学报,2018,39(1):021302.
- [104] Aghili F. Cartesian control of space manipulators for onorbit servicing[C]. AIAA Guidance,Navigation,and Control Conference,Toronto,2010.
- [105]高寒.组合体航天器姿态稳定控制研究[D].哈尔滨:哈尔滨工业大学,2019.
- [106]侯忠生,许建新.数据驱动控制理论及方法的回顾和展望[J].自动化学报,2009,35(6):650-667.
- [107] Huang P, Wang M, Meng Z, et al. Reconfigurable spacecraft attitude takeover control in post-capture of target by space manipulators[J]. Journal of the Franklin Institute,2016,353(9):1985-2008.
- [108] Bandyopadhyay S, Chung S J, Hadaegh F Y.Nonlinear attitude control of spacecraft with a large captured object[J]. Journal of Guidance Control&Dynamics,2016,42(3):458-475.
- [109] Bandyopadhyay S,Chung S J,Hadaegh F Y. Attitude control and stabilization of spacecraft with a captured asteroid[C]. AIAA Guidance, Navigation, and Control Conference,2015-01.
- [110] Gao H,Ma G,Lv Y,et al. Forecasting-based datadriven model-free adaptive sliding mode attitude control of combined spacecraft[J]. Aerospace Science and Technology,2019,86:364-374.
- [111] Gao H,Ma G,Lv Y,et al. Data-driven model-free adaptive attitude control of partially constrained combined spacecraft with external disturbances and input saturation[J]. Chinese Journal of Aeronautics,2019,32(5):1281-1293.
- [112] Huang X,Biggs J D,Duan G. Post-capture attitude control with prescribed performance[J]. Aerospace Science and Technology,2020,96:105572.
- [113] Li Q, Wanng B, Deng Z, et al. A simple orbitattitude coupled modelling method for large solar power satellites[J]. Acta Astronaut,2018,145:83–92.
- [114] Xu S, Wang H, Zhang D, et al. Adaptive reactionless motion control for free-floating space manipulators with uncertain kinematic and dynamics[J]. IFAC Proceeding Volumes, 2013, 46(20):646-653.
- [115] Yoshida K,Dimitrov D,Nakanishi H. On the capture of tumbling satellite by a space robot[C]. Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems,Beijing,2006.
- [116] Dutta S, Behera L. Near-optimal control of serial manipulator with unknown dynamic model[C]. Third International Conference on Advances in Control and Optimization of Dynamical Systems,2014.
- [117] Moosavian S,RastegarI R. Multiple impedance control for space free-flying robots[J]. Journal of Guidance,Control,And Dynamics,2005,28(5):939–947.
- [118] Shi L, Katupitiya J, KInkaid N. A robust attitude controller for a spacecraft equipped with a robotic manipulator[C]. American Control Conference,Boston,2016.
- [119] Li X, Cai Z. Dynamic modeling and simulations of a tethered space solar power station[J]. Journal of Aerospace Engineering,2018,31(4):04018026.
- [120] Zhang F, Huang P. Releasing dynamics and stability control of maneuverable tethered space net[J]. IEEE/ASME Transactions on Mechatronics,2017,22(2):983-993.
- [121] Huang P, Wang D, Zhang F, et al. Postcapture robust nonlinear control for tethered space robot with constraints on actuator and velocity of space tether[J].International Journal of Robust and Nonlinear Control,2017,27(16):2824-2841.
- [122] Meng Z, Wang B, Huang P. Twist suppression method of tethered towing for spinning space debris[J].Journal of Aerospace Engineering, 2017, 30(4):04017012.
- [123] Malashin A A,Smirnov N N,Bryukvina O Y,et al.Dynamic control of the space tethered system[J].Journal of Sound and Vibration,2016,389:41-51.
- [124] Huang P, Hu Z, Meng Z. Coupling dynamics modelling and optimal coordinated control of tethered space robot[J]. Aerospace Science and Technology,2015,41:36-46.