烧蚀炭化热防护材料热导率的贝叶斯辨识方法Bayesian identification of thermal conductivity for charring ablative thermal protection materials
林旭文,高博,易法军,杨强,疏浩
摘要(Abstract):
烧蚀炭化材料热导率对热防护结构的温度分布、进入材料内部的净热流以及热应力分布具有重要影响,提出了一种基于动态贝叶斯网络(DBNs)的炭化材料热解过程热导率的辨识方法。在该方法中,利用全局敏感性分析方法获取各参数在整个升温过程的主要影响区间,在各区间内仅求解相应敏感参数,减少同时辨识的参数个数。将该方法用于TACOT材料热导率辨识,数值算例结果表明,稀疏化后的DBNs使最大辨识误差降低为5.68%,温度复现的均方根误差降低了45.01%,且算法具有较好的稳定性,在考虑观测温度0.8%的高斯噪声下,变异系数仅为0.16。该方法可以进一步应用于求解烧蚀炭化热防护材料的其他参数、辨识结构边界所受气动热环境。
关键词(KeyWords): 烧蚀炭化材料;参数辨识;动态贝叶斯网络;全局敏感性分析;热导率;热解过程
基金项目(Foundation):
作者(Author): 林旭文,高博,易法军,杨强,疏浩
DOI: 10.16338/j.issn.2097-0714.20220063
参考文献(References):
- [1] Salmon D. Thermal conductivity of insulations using guarded hot plates,including recent developments and sources of reference materials[J]. Measurement Science and Technology,2001,12(12):89-98.
- [2] Lobo H,Cohen C. Measurement of thermal conductivity of polymer melts by the line-source method[J]. Polymer Engineering&Science,1990,30(2):65-70.
- [3] Visser E P, Versteegen E H, Van Enckevort W J P.Measurement of thermal diffusion in thin films using a modulated laser technique:Application to chemicalvapor-deposited diamond films[J]. Journal of Applied Physics,1992,71(7):3238-3248.
- [4] Tervola P. A method to determine the thermal conductivity from measured temperature profiles[J].International Journal of Heat and Mass Transfer,1989,32(8):1425-1430.
- [5] Chu F, Donaldson A, Taylor R. Thermal diffusivity measurements at high temperatures by the radial flash method[J]. Journal of Applied Physics,1980,51(1):336-341.
- [6] Raj R R, Venugopal G, Rajkumar M R. Bayesian inference for parameter estimation in transient heat transfer experiments[J]. Journal of Heat Transfer,2015,137(12):121011.
- [7] Alifanov O M. Solution of an inverse problem of heat conduction by iteration methods[J]. Journal of Engineering Physics and Thermophysics, 1974, 26(4):471-476.
- [8] Artyukhin E A, Rumyantsev S V. Optimal choice of descent steps in gradient methods of solution of inverse heat-conduction problems[J]. Journal of Engineering Physics and Thermophysics, 1980, 39(2):865-869.
- [9] Huang C, Chang W. An inverse design method for optimizing design parameters of heat sink modules with encapsulated chip[J]. Applied Thermal Engineering,2012,40:216-226.
- [10] Huang C, Chen Y. An impingement heat sink module design problem in determining simultaneously the optimal non-uniform fin widths and heights[J].International Journal of Heat and Mass Transfer,2014,73:627-633.
- [11] Huang C,Chang W. An inverse problem in estimating the volumetric heat generation for a three-dimensional encapsulated chip[J]. Journal of Electronic Packaging,2010,132(1):10041-10049.
- [12] Haghighi, Golbahar M R, Eghtesad M, et al. Twodimensional inverse heat transfer analysis of functionally graded materials in estimating time-dependent surface heat flux[J]. Numerical Heat Transfer, Part A:Applications,2008,54(7):744-762.
- [13] Morozov V A. Numerical realization of the optimal discrepancy method[J]. USSR Computational Mathematics and Mathematical Physics, 1976, 16(6):194-198.
- [14] Trujillo D M,Busby H R. Optimal regularization of the inverse-heat conduction problem using the L-curve[J].International Journal of Numerical Methods for Heat&Fluid Flow,1994,4(5):447-452.
- [15] Osman A M, Beck J V. Investigation of transient heat transfer coefficients in quenching experiments[J].Journal of Heat Transfer,1990,112(4):843-848.
- [16] Kowsary F,Nazari M. A feasibility study of employing sequential function specification method for estimation of transient heat flux in a non-thermal equilibrium porous channel[J]. Journal of Porous Media,2011,14(5):375-381.
- [17] Czél B, Woodbury K A, Gróf G. Simultaneous estimation of temperature-dependent volumetric heat capacity and thermal conductivity functions via neural networks[J]. International Journal of Heat and Mass Transfer,2014,68:1-13.
- [18] Chudzik S. Applying infrared measurements in a measuring system for determining thermal parameters of thermal insulation materials[J]. Infrared Physics&Technology,2017,81:296-304.
- [19] Liu F. A modified genetic algorithm for solving the inverse heat transfer problem of estimating plan heat source[J]. International Journal of Heat and Mass Transfer,2008,51(15-16):3745-3752.
- [20] Czél B, Gróf G. Inverse identification of temperaturedependent thermal conductivity via genetic algorithm with cost function-based rearrangement of genes[J].International Journal of Heat and Mass Transfer,2012,55(15-16):4254-4263.
- [21] Edyta H, Damian S, Adam Z. Determination of the heat transfer coefficient by using the ant colony optimization algorithm[J]. Parallel Processing and Applied Mathematics,2011,7203:470-479.
- [22] Vakili S, Gadala M S. Effectiveness and efficiency of particle swarm optimization technique in inverse heat conduction analysis[J]. Numerical Heat Transfer,Part B:Fundamentals,2009,56(2):119-141.
- [23] Yadav M K, Singh S K, Parwez A, et al. Inverse models for transient wall heat flux estimation based on single and multi-point temperature measurements[J].International Journal of Thermal Sciences,2018,124:307-317.
- [24] Kaipio J, Somersalo E. Statistical and computational inverse problems[M]. New York:Springer,2004.
- [25] Tan S, Fox C, Nicholls G. Inverse problems[M].Auckland, New Zealand, University of Auckland:Course Notes for Physics 707,2006.
- [26] Winkler R. An introduction to Bayesian inference and decision[M]. Gainesville, Florida:Probabilistic Publishing,2003.
- [27] Wang J, Zabaras N. A Bayesian inference approach to the stochastic inverse heat conduction problem[J].International Journal of Heat and Mass Transfer,2004,47:3927-3941.
- [28] Naveira-Cotta C P,Cotta R M,Orlande H R B. Inverse analysis with integral transformed temperature fields:Identification of thermophysical properties in heterogeneous media[J]. International Journal of Heat and Mass Transfer,2011,54(7-8):1506-1519.
- [29] Lee S H, Song J. Bayesian-network-based system identification of spatial distribution of structural parameters[J]. Engineering Structures, 2016, 127(15):260-277.
- [30] Sardeshmukh A, Reddy S, Gautham B, et al.Bayesian networks for inverse inference in manufacturing bayesian networks[J]. IEEE International Conference on MachineLearning&ApplicationsIEEE,2017:626-631.
- [31] Quan X, He B, Li X. A Bayesian network-based method to alleviate the Ill-posed inverse problem:A case study on leaf area index and canopy water content retrieval[J]. IEEE Transactions on Geoscience and Remote Sensing,2015,53(12):6507-6517.
- [32] Lee D,Choi D. Analysis of the reliability of a startergenerator using a dynamic Bayesian network[J].Reliability Engineering and System Safety,2019,195:106628.
- [33] Ling Y, Mahadevan S. Integration of structural health monitoring and fatigue damage prognosis[J]. Mechanical Systems and Signal Processing,2012,28:89-104.
- [34] Helman P, Veroff R, Atlas S R, et al. A Bayesian network classification methodology for gene expression data[J]. J. Comput. Biol,2004,11(4):581-615.
- [35] Kaipio J, Somersalo E. Statistical and computational inverse problems[M]. New York:Springer,2005.
- [36] Stuart A M. Inverse problems:A Bayesian perspective[J]. Acta Numerica,2010,19:451-559.
- [37] Ding J, Chen J Z, Lin J X, et al. Particle filteringbased recursive identification for controlled autoregressive systems with quantised output[J]. IET control theory&applications,2019,13(14):2181-2187.
- [38] Jouin M,Gouriveau R,Hissel D,et al. Particle filterbased prognostics:Review,discussion and perspectives[J]. Mechanical Systems and Signal Processing,2016,72-73:2-31.
- [39] Iman R L, Hora S C. A robust measure of uncertainty importance for use in fault tree system analysis[J]. Risk Ana,1990,10:401-406.
- [40] Saltelli A,Anderes T H,Homma T. Sensitivity analysis of model output:An investigation of new techniques[J].Comput Statist Data Anal,1993,15:211-238.
- [41] Homma T, Saltelli A. Importance measures in global sensitivity analysis of nonlinear models[J]. Reliab Engin Syst Safety,1996,52:1-17.
- [42] Jean L,Tom E V,Daniele B,et al."TACOT v3. 0"(2014). Ablation Workshop:Code Comparison. 4[EB/OL]. https://uknowledge. uky. edu/ablation_code/2014.